1,337 research outputs found

    The Separation Principle in Stochastic Control, Redux

    Full text link
    Over the last 50 years a steady stream of accounts have been written on the separation principle of stochastic control. Even in the context of the linear-quadratic regulator in continuous time with Gaussian white noise, subtle difficulties arise, unexpected by many, that are often overlooked. In this paper we propose a new framework for establishing the separation principle. This approach takes the viewpoint that stochastic systems are well-defined maps between sample paths rather than stochastic processes per se and allows us to extend the separation principle to systems driven by martingales with possible jumps. While the approach is more in line with "real-life" engineering thinking where signals travel around the feedback loop, it is unconventional from a probabilistic point of view in that control laws for which the feedback equations are satisfied almost surely, and not deterministically for every sample path, are excluded.Comment: 23 pages, 6 figures, 2nd revision: added references, correction

    On time-reversibility of linear stochastic models

    Full text link
    Reversal of the time direction in stochastic systems driven by white noise has been central throughout the development of stochastic realization theory, filtering and smoothing. Similar ideas were developed in connection with certain problems in the theory of moments, where a duality induced by time reversal was introduced to parametrize solutions. In this latter work it was shown that stochastic systems driven by arbitrary second-order stationary processes can be similarly time-reversed. By combining these two sets of ideas we present herein a generalization of time-reversal in stochastic realization theory.Comment: 10 pages, 4 figure

    Likelihood Analysis of Power Spectra and Generalized Moment Problems

    Full text link
    We develop an approach to spectral estimation that has been advocated by Ferrante, Masiero and Pavon and, in the context of the scalar-valued covariance extension problem, by Enqvist and Karlsson. The aim is to determine the power spectrum that is consistent with given moments and minimizes the relative entropy between the probability law of the underlying Gaussian stochastic process to that of a prior. The approach is analogous to the framework of earlier work by Byrnes, Georgiou and Lindquist and can also be viewed as a generalization of the classical work by Burg and Jaynes on the maximum entropy method. In the present paper we present a new fast algorithm in the general case (i.e., for general Gaussian priors) and show that for priors with a specific structure the solution can be given in closed form.Comment: 17 pages, 4 figure
    • …
    corecore